张勇斌老师介绍
姓名 | 张勇斌 | 性别 | 男 | 出生年月 | 1971.8 | 职称 | 教授 | ||
单位 | 437ccm·必赢国际机械工程学院 | 政治面貌 | 无党派 | ||||||
所属学位点 | 机械制造及自动化 | ||||||||
研究方向 | 摩擦学、工程表面技术、微纳米力学 | ||||||||
学校及社会兼职 | 国际期刊Journal of Mechanical Science and Technology评审专家 | ||||||||
国际期刊Journal of Engineering, Design and Technology评审专家 | |||||||||
国际期刊ASCE Journal of Engineering Mechanics评审专家 | |||||||||
国际期刊Journal of Adhesion Science and Technology评审专家 | |||||||||
国际期刊Meccanica评审专家 | |||||||||
国际期刊Materials & Design评审专家 | |||||||||
国际期刊Nanoscale Research Letters评审专家 | |||||||||
国际期刊RSC Advances评审专家 | |||||||||
国际期刊International Journal of Heat and Mass Transfer评审专家 | |||||||||
国际期刊Journal of Computational and Applied Mathematics评审专家 | |||||||||
国际期刊Recent Patents On Mechanical Engineering 编委 | |||||||||
教书育人:以高尚行为影响人,以优良品德说服人,树良好学人风范 招收研究生方向:1.摩擦学:新的节能润滑理论和技术;工程表面摩擦学技术与应用;新型摩擦零部件的开发。2.微纳米力学 联系方式:engmech1@sina.com 个人简况 在界面滑移流体润滑理论、纳米流体流动理论、混合流变弹流润滑理论、塑性接触流体润滑理论上作出了重要的创造性贡献。建立受限纳米流体流动方程,为纳米流体流动分析提供了理论基础。在国内外著名刊物如美国摩擦学者与润滑工程师协会会刊《Tribology Transactions》、英国机械工程协会会刊《Proceedings of the Institution of Mechanical Engineers: Part J-Journal of Engineering Tribology》、德国化学学会会刊《Journal of Molecular Liquids》、国际应用摩擦学期刊《Industrial Lubrication and Tribology》、巴尔干半岛摩擦学会会刊《Journal of the Balkan Tribological Association》、前苏联著名流体力学期刊《Fluid Mechanics Research》、国际工程模拟期刊《International Journal for Engineering Modeling》、国际应用科学研究期刊《Journal of Applied Sciences》、国际应用力学期刊《Journal of Theoretical and Applied Mechanics》、《Theoretical and Computational Fluid Dynamics》、《Meccanica》、《Acta Mechanica》、《Flow,Turbulence and Combustion》、《Journal of Adhesion Science and Technology》国际传热传质会刊《International Journal of Heat and Mass Transfer》、《International Communications in Heat and Mass Transfer》、Nature出版集团子刊《Scientific Reports》、国内《自然科学进展》、《应用数学与力学》、《力学学报》、《工程力学》等发表学术论文100多篇,SCI收录90多篇,EI收录60多篇。研究成果在国内外产生了重要影响。曾为ASME《Journal of Tribology》、《Nanotechnology》、《Tribology Letters》等国际科技期刊审稿人。“Contact-fluid interfacial shear strength and its critical importance in elastohydrodynamic lubrication”曾被Emerald出版集团评为该集团2006年度杰出论文之一。申请中国发明专利14项,已授权11项, 已转让8项。 主要研究成果: 1、建立线接触粘塑性流体弹流润滑理论和实验方法,与合作者共同取得。建立该理论严谨的数学模型和数值求解法,得到中、重载大滑滚比下弹流润滑膜坍塌。理论结果得到日本、香港、中国内地和英国等科学家的实验证实,对弹流润滑研究产生了重要影响。研究成果以系列文章形式发表在《Tribology Transactions》上。 2、考虑边界膜的动力学效应和边界膜沿膜厚方向的非连续介质特性,建立边界膜润滑的理论研究模型即边界膜分析的“流量因子”法,研究表明边界膜的非连续介质效应可增大边界膜的承载能力。这个模型的建立使边界膜的理论建模研究成为可能,有助于深入详细地理解边界膜的承载和摩擦机理。研究成果发表在《Journal of Molecular Liquids》和《Industrial Lubrication and Tribology》上。继而推导出受限纳米流体流动方程,该方程得到分子动力学模拟结果的广泛验证,具有重要理论意义和应用价值。研究结果分别发表在《Journal of Computational and Theoretical Nanoscience》、《Theoretical and Computational Fluid Dynamics》、《International Journal of Heat and Mass Transfer》、《International Communications in Heat and Mass Transfer》和《Scientific Reports》上。 3、提出混合流变润滑理论。该理论考虑高副接触区中粘弹性流体膜、粘塑性流体膜和边界膜的共存,解释了早期Bell和Kannel 高速重载弹流润滑实验中难以由传统理论解释的膜厚随载荷和速度反常变化现象。在该理论基础上求解了线接触混合流变弹流润滑,得到了一些重要结果。研究成果发表在《Industrial Lubrication and Tribology》、《International Journal of Fluid Mechanics Research》、《Journal of the Balkan Tribological Association》上。从分子级水平计算了常规润滑流体-接触表面界面剪切强度,验证了所提出的界面剪切强度计算公式的正确性,勘实了混合流变润滑理论基础。 4、提出混合接触模式。该接触模式考虑微接触区中流体膜、边界膜和干接触的共存,比以往的混合润滑模式先进得多。目前,国际主流混合润滑研究群体正向该研究模式靠拢。在该接触模式下得到了更真实的面接触和线接触接触解。研究成果发表在 《Industrial Lubrication and Tribology》、《Journal of Molecular Liquids》、《Journal of Applied Sciences》、《Journal of Theoretical and Applied Mechanics》、《International Journal for Engineering Modeling》、《Theoretical and Computational Fluid Dynamics》上。 建立混合接触流体润滑中的弹塑性接触流体润滑理论和全塑性接触流体润滑理论。这些理论得到实验的充分证实。研究结果分别发表在《Journal of Applied Sciences》、《Theoretical and Computational Fluid Dynamics》、《Flow,Turbulence and Combustion》、《Journal of Adhesion Science and Technology》上。 发表的主要论文: 1. Zhang, Y. B. and Wen, S. Z., EHL film thickness limitation theory under a limiting shear stress, Tribology Transactions, 2002, Vol.45, 531-539. 2. Zhang, Y. B. and Wen, S. Z., An analysis of elastohydrodynamic lubrication with limiting shear stress: Part I-Theory and solutions, Tribology Transactions, 2002, Vol.45, 135-144. 3. Zhang, Y. B. and Wen, S. Z., An analysis of elastohydrodynamic lubrication with limiting shear stress: Part II-Load influence, Tribology Transactions, 2002, Vol.45, 211-216. 4. Zhang, Y. B. and Wen, S. Z., About the load-carrying capacity of elastohydrodynamic lubrication film, Tribology Transactions, 2001, Vol.44, 1-10. 5. Zhang, Y. B. and Wen, S. Z., A lubrication deviation from the classical EHL theory by the lubricant viscoplasticity: Part I-Film thickness dependence, Tribology Transactions, 2001, Vol.44, 224-232. 6. Zhang, Y. B. and Wen, S. Z., A lubrication deviation from the classical EHL theory by the lubricant viscoplasticity: Part II-Boundary of lubrication regimes, Tribology Transactions, 2001, Vol.44, 305-309. 7. Wen, S. Z. and Zhang, Y. B., EHL performance of the lubricant with shear strength: Part I-Boundary slippage and film failure, Tribology Transactions, 2000, Vol.43, 700-710. 8. Zhang, Y. B., Prevention of interfacial slippage in isothermal pure rolling line contact elastohydrodynamic lubrication under heavy loads, Proc. Instn. Mech. Engrs., Part J: J. Eng. Trib., 2003, Vol.217, 323-332. 9. Zhang, Y. B., Tang, K. and Lu, G. S., Model of elastohydrodynamic lubrication with molecularly thin lubricating films: Part I-Development of analysis, International Journal of Fluid Mechanics Research, 2003, Vol.30, 542-557. 10. Zhang, Y. B. and Lu, G. S., Model of elastohydrodynamic lubrication with molecularly thin lubricating films: Part II-Results for an exemplary lubrication, International Journal of Fluid Mechanics Research, 2003, Vol.30, 558-571. 11. Zhang, Y. B., Mixed rheologies in elastohydrodynamic lubrication, Industrial Lubrication and Tribology, 2004, Vol.56, 88-106. 12. Zhang, Y. B., Contact surface irregularity and contact-fluid interfacial slip effects in elastohydrodynamic lubrication, Journal of the Balkan Tribological Association, 2004, Vol.10, 368-382. 13. Zhang, Y. B., Modeling of molecularly thin film elastohydrodynamic lubrication, Journal of the Balkan Tribological Association, 2004, Vol.10, 394-421. 14. Zhang, Y. B., Contact-fluid interfacial limiting shear stress effect in thermal elastohydrodynamic lubrication: Part I-Theory, Journal of the Balkan Tribological Association, 2005, Vol.11, 102-123. 15. Zhang, Y. B., Contact-fluid interfacial limiting shear stress effect in thermal elastohydrodynamic lubrication: Part II-Film collapse and failure, Journal of the Balkan Tribological Association, 2005, Vol.11, 124-134. 16. Zhang, Y. B. and Lu, G. S., Flow factor for molecularly thin fluid films in one-dimensional flow due to fluid discontinuity, Journal of Molecular Liquids, 2005, Vol.116, 43-50. 17. Zhang, Y. B., How does dry contact occur in elastohydrodynamic lubrication? Industrial Lubrication and Tribology, 2005, Vol.57, 176-180. 18. Zhang, Y. B., A justification of the load-carrying capacity of elastohydrodynamic lubrication film based on the Newtonian fluid model, Industrial Lubrication and Tribology, 2005, Vol.57, 224-232. 19. Zhang, Y. B., Review of mixed lubrication in concentrated contacts: Thinning, mixed and partial films, classical, modern and future modes, International Journal for Engineering Modeling, 2005, Vol.18, 87-129. 20. Zhang, Y. B., Contact-fluid interfacial shear strength and its critical importance in elastohydrodynamic lubrication, Industrial Lubrication and Tribology, 2006, Vol.58, 4-14. 21. Zhang, Y. B., Shear strength of a fluid in the whole ranges of pressure and temperature, Industrial Lubrication and Tribology, 2006, Vol.58, 72-88. 22. Zhang, Y. B., Flow factor of non-continuum fluids in one-dimensional contact, Industrial Lubrication and Tribology, 2006, Vol.58, 151-169. 23. Zhang, Y. B., EHL inlet zone analysis with the contact-lubricant interfacial limiting shear stress, Industrial Lubrication and Tribology, 2006, Vol.58, 202-209. 24. Zhang, Y. B., Boundary lubrication-An important lubrication in the following time, Journal of Molecular Liquids, 2006, Vol.128, 56-59. 25. Zhang, Y. B., Contact-fluid interfacial slippage in hydrodynamic lubricated contacts, Journal of Molecular Liquids, 2006, Vol.128, 99-104. 26. Zhang, Y. B., Flow factor approach to molecularly thin hydrodynamic film lubrication, Journal of Molecular Liquids, 2006, Vol.128, 60-64. 27. Zhang, Y. B., Monte Carlo simulation results of some basic physical properties of Lennard–Jones fluids, Journal of Molecular Liquids, 2006, Vol.128,96-98. 28. Zhang, Y. B., Analytical solution to a mode of mixed elastohydrodynamic lubrication with mixed contact regimes: Part I. Without consideration of contact adhering layer in the inlet zone, Journal of Molecular Liquids, 2007, Vol.130, 88-94. 29. Zhang, Y. B., Analytical solution to a mode of mixed elastohydrodynamic lubrication with mixed contact regimes: Part II—Considering the contact adhering layer effect in the inlet zone, Journal of Molecular Liquids, 2007, Vol.130, 95-103. 30. Zhang, Y. B., Study of an engineering mixed contact: Part I-Theoretical analysis, Journal of Applied Sciences, 2007, Vol.7, 1249-1259. 31. Zhang, Y. B., Study of an engineering mixed contact: Part II-Results for isosceles triangle surface ridges, Journal of Applied Sciences, 2007, Vol.7, 1351-1361. 32. Zhang, Y. B., Study of an engineering mixed contact: Part III-Results for isosceles truncated triangle surface ridges, Journal of Applied Sciences, 2007, Vol.7, 1467-1474. 33. Zhang, Y. B., When should the boundary lubrication be considered in a hydrodynamic contact? Journal of Theoretical and Applied Mechanics, 2008, Vol.38, 71-84. 34. Zhang, Y. B., Boundary slippage for generating hydrodynamic load-carrying capacity, Applied Mathematics and Mechanics, 2008, Vol.29, 1155-1164. 35. Wen, S. Z. and Zhang, Y. B., The yielding of elastohydrodynamic oil films, First Asian Tribology Conference, 1998, Vol.1, 6-10. 36. Zhang, Y. B., Boundary film shear elastic modulus effect in hydrodynamic contact: Part I-Theoretical analysis and typical solution, Theoretical and Computational Fluid Dynamics, 2009, Vol.23, 239-254. 37. Zhang, Y. B., Boundary film shear elastic modulus effect in hydrodynamic contact: Part II-Influence of operational parameters, Theoretical and Computational Fluid Dynamics, 2009, Vol.23, 255-269. 38. Zhang, Y. B., Analysis of contact mixing with boundary and hydrodynamic fluid films considering boundary slippage, Journal of Theoretical and Applied Mechanics, Warsaw, 2010, Vol.48, No.1, 191-205. 39. Zhang, Y. B., Influence of the pressure component in boundary film on the elastic deformation and film thickness of a mixed micro contact, Journal of Computational and Theoretical Nanoscience, 2010, Vol.7, No.10, 1721-1724. 40. Zhang, Y. B., A survey of boundary lubrication effect in elastohydrodynamic lubrication, Journal of Computational and Theoretical Nanoscience, 2010, Vol.7, No.8, 1496-1500. 41.Zhang, Y. B., Boundary slippage for improving the load and friction performance of a step bearing, Transactions of Canadian Society for Mechanical Engineers, 2010, Vol.34, 373-387.
63. Zhang, Y. B., Calculation results for the shear strengths of some ordinary oils at low pressures. J. Balkan Trib. Assoc., 2014, Vol.20, 429-435.
Assoc., 2014, Vol.20, 309-310.
119-124.
Assoc., 2014, Vol.20, 522-538.
slippage technology. Recent Patents On Mech. Eng., Vol.8, 2015, 33-37.
strength. Recent Patents On Mech. Eng., 2014, Vol.7, 212-218.
liquid pressures by using the Lennard-Jones potential model. J. Balkan Trib. Assoc., 2014, Vol.20, 618-629.
liquid pressures by using the Lennard-Jones potential model. J. Balkan Trib. Assoc., 2014, Vol.20, 630-638.
liquid pressures by using the Coulomb interaction model. J. Balkan Trib. Assoc., Vol.21, 2015, 594-605.
performance of a lubricated sliding contact. Recent Patents On Mech. Eng., Vol.8, 2015, 59-63.
Assoc., Vol.21, 2015, 606-615.
Eng., 2014, Vol.7, 219-221.
hydrodynamic step bearing. Part I. First mode of boundary slippage for film breakdown. J. Balkan Trib. Assoc., 2014, Vol.20, 259-270.
hydrodynamic step bearing. Part II. Second and third modes of boundary slippage for film breakdown. J. Balkan Trib. Assoc., 2015, Vol.21, No.2, 362-375. pad thrust slider bearing. J. Balkan Trib. Assoc., 2015, Vol.21, No.2, 376-388.
hydrodynamic lubricated contact. J. Balkan Trib. Assoc., 2015, Vol.21, 606-619.
Mass Trans., 2015, Vol.89, 733-742.
molecular dynamics simulation results for the flow of a confined molecularly thin fluid film. Theor. Comput. Fluid Dyn., 2015, Vol.29, 193-204.
2016,Vol.92, 1004-1008.
14539.
adsorption. J. Balkan Trib. Assoc., 2015,Vol.21, 937-951.
slippage. J. Theor. Appl. Mech., Warsaw, 2016. Vol.54,No.2,345-352.
2015, Vol.8, 242-248.
boundary slippage technology. Recent Patents On Mech Eng., 2016, Vol.9,63-70.
Assoc., 2016,Vol.22, 654-671.
Assoc.,2015,Vol.21, 952-960.
flows in a nano channel. Int. J. Heat Mass Transfer, Vol.100, 2016, 672-679. 90. Zhang, Y. B., Poiseuille flow in a nano channel for different wall surface patterns. Int. J. Heat Mass Transfer, 2016,Vol.95, 243-248.
channel by the flow factor approach model. Int. Commun. Heat Mass Transfer, 2016, Vol.73, 111-113. 92. Zhang, Y. B., An additional validation of the flow factor approach model. Int. J. Heat Mass Transfer, 2016,Vol.95, 953-955.
capacity of a hydrodynamic journal bearing with artificial boundary slippage. J. Balkan Trib. Assoc.,Vol.21, 2015, 930-936.
bearing improved by the boundary slippage. J. Balkan Trib. Assoc., 2016, 2016, Vol.22, 751-765. 95. Zhang, Y. B., Effect of wall surface roughness on the mass transfer in a nano channel. Int. J. Heat Mass Transfer, 2016, Vol.100, 295-302. 96.张勇斌,界面滑移流体动压膜承载能力的形成,应用数学与力学,2008,29卷,1048-1056。 97.温诗铸、张勇斌,油膜的屈服及其生长,自然科学进展,1999,9卷,456-462。 98.温诗铸、张勇斌、黄平,粘塑性弹流润滑膜承载能力研究,自然科学进展,2001,11卷,379-385。 99.张勇斌、黄平、温诗铸,润滑剂黏塑性引起的弹流润滑偏离经典理论—I.膜厚公式,自然科学进展,2001,11卷,602-608。 100.温诗铸、张勇斌、黄平,润滑剂黏塑性引起的弹流润滑偏离经典理论—II.润滑机制的边界,自然科学进展,2001,11卷,874-878。 101.张勇斌、温诗铸,润滑轴承的有限元分析及其多重网格算法,工程数学学报,1999,16卷,19-25。 102.张勇斌,边界膜剪切弹性模量对于微接触性能的影响,力学学报,2010,42卷,4期,710-718。 103.张勇斌,微接触区中边界膜滑移效应分析:微接触区宽度和表面粗糙度的影响,工程力学,2010,27卷,6期,215-222。 |